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The Hilbert Expansion to the Boltzmann 
Equation for Steady Flow 
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The Hilbert expansion to the Boltzmann equation is carried out for steady flow. 
It is shown that the first term in the Hilbert series for the distribution function is 
a local Maxwellian leading to the steady Euler equations. The steady field 
equations that follow from the solution of the second term in the series are 
derived. The formulas for thermal conductivity and for viscosity of Hilbert that 
appear in the steady field equations of the second approximation are shown to 
be precisely the same as those obtained by Chapman and Enskog. The proce- 
dure to obtain higher approximations by Hilbert's method is summarized. 

KEY WORDS: The Hilbert expansion; the Boltzmann equation; the local 
Maxwellian; the solvability conditions; the surnmational invariants. 

1. INTRODUCTION 

The properties of a binary gas are usually characterized by the well-known 
Boltzmann equation. Although the equation was proposed by Boltzmann (1) 
more than a century ago, the analytical methods of solution are few owing 
to the nonlinear complex structure of the collision integral. 

A class of approximate analytical solutions called normal solutions can 
be constructed assuming that the distribution function f does not explicitly 
depend on the coordinates x and time t. The distribution function f can 
then be expanded in the form 

f=fr(l+eP( 1)+0( 2 ) +  . . . )  (1.1) 
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where fL is a local Maxwellian given by 

n m IL = ( ~ ) 3 P - e x p [ -  ~T ( v -  u)21 (1.2) 

and n is the number density, u is the gross velocity field, T is the 
temperature field (measured in energy units), v is the atomic (or molecular) 
velocity, and m is the atomic (or molecular) mass of the species constituting 
the gas. fL itself does not satisfy the Boltzmann equation unless n, u, and T 
are constants (the uniform state of the gas) and the functions ~(1), ~(2), 
etc. are determined so as to make the distribution function f a solution of 
the Boltzmann equation. The hydrodynamic equations for n, u, and T can 
then be obtained. The procedure summarized above is due to Chapman (a) 
and Enskog (5) and the expansion (1.1) is called the Chapman-Enskog 
expansion. 

Historically, the Chapman-Enskog theory was proceeded by a slightly 
different expansion due to Hilbert. (8'9) As will be discussed in detail in 
Section 2 of this paper, the Hilbert expansion is constructed by introducing 
an auxiliary parameter which may be set equal to unity at the end of the 
calculations and by expanding both the distribution function f and the 
hydrodynamic variables n, u, and T in powers of this parameter. 

Hilbert himself succeeded in showing that the first term in the series 
for the distribution function f was the local Maxwellian. Thus, the derived 
hydrodynamic equation were Euler's equations of ideal gas flow as will be 
discussed in Section 3 of this work. An attempt to obtain the second term 
in the Hilbert series for the distribution function f leading to a computation 
of the coefficients of thermal conductivity and of viscosity was made by 
Lunn. (11)'3 In the published abstract of Lunn's paper, there is strong 
evidence to believe that Lunn succeeded in obtaining the general form of 
the second term that appears in the Hilbert series and ended in formulas 
for thermal conductivity and viscosity. Unfortunately, Lunn's paper never 
appeared in print; thus, the details of his computations are lost. Since then, 
to the best of this author's knowledge, no work has been published in this 
direction, probably because of the Chapman-Enskog procedure which 
appeared later leading to evaluations of thermal conductivity and viscosity. 

The aim of this paper is to carry on the Hilbert expansion to the 
Boltzmann equation from the state where it was left. Although the details 
of the Hilbert method and questions about the convergence of the Hilbert 
series can be found in the works of Grad, (6'7) Kogan, (1~ Cercignani, (2) and 
McLennan (12), discussions of the second and higher terms in the series are 
seldom given. 

3 The author learned about Lunn's work from the referees of this paper. 
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In this study, the Hilbert series is carried on beyond the first term. In 
doing so, the expansion is restricted to steady flow to avoid the initial value 
problem. The steady field equations (the Navier-Stokes equations) that 
follow from the second approximation are derived. The coefficients of 
thermal conductivity and viscosity of Hilbert are shown to be precisely the 
same as those obtained by Chapman and Enskog. The procedure to carry 
out the expansion to obtain higher approximations is also discussed. 

. THE HILBERT METHOD OF EXPANSION 

Let r be an auxiliary expansion parameter. In the absence of an 
external field, the Boltzmann equation can be written as 

ai 
+ v.  V f =  1 j [ f ]  

~t 

where J [f] is the collision integral given by 

J[  f]  = f [ f ' f (  - f f l  ] g do d3vl 

and 

f '  = f(v'),  f~ = f(v'l), f = f(v), fi = f(vl)  

and 

(2.1) 

(2.2) 

T =  T ~~ + xBT + x26T ' + x38T" + �9 �9 �9 (2.6) 

Each term in the above expansions for the hydrodynamic variables n, u, 
and T can be related to the terms in the Hilbert series for the distribution 
function f [Eq. (2.3)] by substitution from Eqs. (2.3), (2.4), (2.5), and (2.6) 

(2.4) 
(2.5) 

and 

u = u  (~ + x ~ u + x 2 8 u  ' + r 3 6 u  " +  . - .  

= Iv - v i i  

u u and v', v] are the velocities before and after a binary encounter, 
respectively, and do is the differential cross-section. 

To construct a normal solution to the Boltzmann equation by the 
Hilbert expansion, the distribution function f is expanded in powers of 
about fL, which will be identified as the local Maxwellian: 

f = f L ( 1  + x~ ~1) + /s + /~3t~(3) "Jr- " ' ' )  (2.3) 

Similarly, the number density n, the gross velocity u, and the temperature T 
are expanded in powers of x: 

n = n (~ + x~n + K26n ' + / r  + �9 �9 �9 
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into the defining relations 

n =ffa3  (2.7) 

= f v j a 3 v  (2.8) nu i 

-~ nT + �89 mnu 2 = f �89 mv2fd3v (2.9) 

and by collecting the terms of equal power in x together. The parameter 
which appears in the above expansions is introduced for collecting terms 
together belonging to the same approximation and may be set equal to 
unity at the end of the calculations. 

Substituting from Eq. (2.3) into Eq. (2.2), one has 

J[ f ]  = J [ f L ] -  n(~ (xlq'(') + ~2[i~(2) + j,(,(l),q,(,))] 

+ s + Js(d?(1),* (2)) + Js(q~(2),~(l))] 

+ . . . }  (2.10) 

where 

and 

n(~ ~) = f fLl((O~l -- dp'tp])g do d3v, (2.11) 

n(~ = f fL~(eO + ~, -- e O' -- ~'~)g dod3v, (2.12) 

If Eqs. (2.3) and (2.10) are substituted into Eq. (2.1), equal powers of i~ 
will yield 

J[fL] = 0  (2.t3) 

OfL + v .  VfL = --n(~ ('1 (2.14) 
Ot 

 (fL, ")) 
0t 

O(fL,~ (2)) 
Ot 

+v"  V(fL~(I)) = -- n(O)fL[Iq~ (2) + Js(q~(O,~(O)] (2.15) 

+ V V(A~ (2)) n(O) I~(3) js(qS(2),~(,))] = - + + 

(2.16) 

etc. It follows from Eq. (2.13) that f r  is a local Maxwellian. Equations 
(2.14), (2.15), and (2.16) then constitute a set of uncoupled inhomogeneous 
linear integral equations for q~(1), q~(2), and q~(3). From the theory of 
inhomogeneous linear integral equations, nontrivial solutions for ~(!), ~(2) 
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q,(3), etc. exist only if the solvability conditions 

f ~ ( -~  +v" V)fLd3v=O (2.17) 

f q,~( O +v. V)fLe/1) d3v=O (2.18) 

f lp.( ~t +v" V)fcgl(Z) d3v=O (2.19) 

etc. are satisfied where ~b, is any of the summational invariants 1, v -  u (~ 
and c --=�89 - u(~ 2. 

To avoid problems of the initial state of the gas, from now on the 
discussion is restricted to the case of steady flow. In this case, all of the 
partial time derivatives disappear. 

3, THE FIRST A P P R O X I M A T I O N  (THE EULER EQUATIONS)  

The first term in the Hilbert series for the distribution function satisfies 
Eq. (2.13). Thus, fc is a local Maxwellian. By utilizing Eqs. (2.7), (2.8), and 
(2.9) which yield 

n (~ =ffLd3,  (3.1) 

n(~ ~ = f vjc d3v (3.2) 

3n(~176 + �89176 ~~ = f �89 d3v (3.3) 

in the first approximation, the local Maxwellian fL can be written as 

fL=n(O)(m)3/2exp[ m (v -- 1 (3.4) 
2qrT (~ 2T(~ u(~ 2 

The solvability conditions (2.17) for steady flow then yield the steady flow 
Euler equations: 

a (o(O)u?)) = 0 ( 3 . 5 )  
Ox i 

O(~ ~ au/(~ - aP(~ (3.6) 
0x; ~xi 

uj(O) ~ r  '~ _ 2 T(O) 0uk (~ (3.7) 
axj ax~ 
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where the pressure and mass density in the first approximation are given by 

p(O) = n(O)T(O) (3.8) 

and 

respectively. 

p(0) = mn(O) (3 .9)  

4. THE SECOND APPROXIMATION (THE NAVIER-STOKES 
EQUATIONS) 

The next approximation in the Hilbert series for the distribution 
function satisfies Eq. (2.14). By substitution from Eq. (3.4) into (2.14) and 
utilizing Eqs. (3.5), (3.6), and (3.7), one obtains 

-n (~  - 1  l m ( v -  - T(~ 3T ~~ T(O)~ [ u(~ 2 5 -u/(O))Ox i 

3y(v-u(~ 2] ~ ~u}~ (4.1) + [(v, - u:O,)_ 1 

The operator I in Eq. (4.1) is a linear integral operator. To simplify the 
manipulations, let ~i and ~'0 be functions defined by 

I~i = [ l m ( v - u ( ~  5 T ( ~  u}~ (4.2) 

I'r~j = m[ (v i - u(i~ - u) ~ - �89 - u(~ 2 ] (4.3) 

satisfying the orthogonality conditions 

f G ~ i A  d3v = 0 (4.4) 

f q:dL d3v = 0 (4.5) 

The solution of the linear integral equations (4.2) and (4.3) for ~i and 
~-~ satisfying the orthogonality conditions (4.4) and (4.5) can be determined 
by expressing them in terms of certain polynomials called Sonine polynomi- 
als (for details, one may consult Chapman and Cowling(4)). Approximate 
solutions of ~'i and ~'/j can be obtained by a variational technique (such a 
technique is discussed in McLennan (12)). 

Once ,~i and "rzj are determined, the solution for fro) can be immedi- 
ately written down as 

q,(~) = 1 3T  (~ 1 
n(O)T(O) 2 ~i 3x i n(O)T(O) rqD~ + ~(l) (4.6) 
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where 

1(~u '~  Ou)~ ) (4.7) 

and ~1) is a linear form of the summational invariants given by 

~(1) = C1 ..[. C~f. -I'- C i ( v  , - u (0))  (4.8) 

The coefficients C1, C,, and C = (Cx, C:, Ca) are functions of x, y, and z 
only and are related to the hydrodynamic variables through Eqs. (2.7), 
(2.8), and (2.9), which after some manipulations reduce to 

8n=ffL+~l)d3v=n~~ + ~ T~~ (4.9) 

n~~ = f ( v i  - u/~~ d3/.) = n ~0) T ~~ m C; (4.10) 

~(T~~ + n~~ = f fL,~ ~1~ d3v = n~~176 G + ~T~~ (4.11) 

in the second approximation. In obtaining relations (4.9), (4.10), and (4.11), 
the orthogonality conditions (4.4) and (4.5) for ~i and ry together with the 
integrals (A1), (A2), and (A6) given in the Appendix are utilized. Solving 
from Eqs. (4.9), (4.10), and (4.11) for C l, Ci, and C,, one obtains 

3 6T (4.12) C1 

C~ = ~ 8u i (4.13) 

C, = ~ (4.14) 

To obtain the hydrodynamic equations in this approximation, one only 
needs to write down the solvability conditions for steady flow 

;~pau V(A~(I)) d31) = 0 (4.15) 

and carry out the manipulations for ~p~ = 1, v i - u} ~ and �89 i - u}~ 2. 
(i) ~ = 1. In this case, the solvability conditions (4.15) become 

(1)iJgL~ (I) d3v = 0 (4.16) 
3 

Substitution from Eq. (4.6) into Eq. (4.16) for ~ )  and utilizing the 
orthogonality conditions (4.4) and (4.5) for &i and r/j yield 

~--~- [ f (vi - ui~~ d3v + u~~ f fl~4,'O d3v] = O (4.17) 
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Utilizing the integrals (A1) and (A2) given in the Appendix, one obtains 

Ox-7 m Ci + n(~ + n(~176 u} ~ = 0 (4.18) 

(ii) tp~ = vi- u} ~ �9 If tp~ is taken to be v i -  u} ~ , the solvability condi- 
tions (4.15) can be written in the form 

[f(t)i - ~fi0,)(~j __ u)O))fL~,)(1 , d31)+ u)0,f(Gi-  U(0))fL(~(1 ) d3�9 a~. 

On(O) [ f (�9 u)O))fL+(1)d3�9 -t,- u)O) f fL+(l) d3tj} :0  (4.19) + W  

Substitution from Eq. (4.6) into Eq. (4.19) and utilizing the orthogonality 
conditions (4.4) and (4.5) for ~i and rq once more yield 

0 1 ~k r~ D~ % (~'- 4~ #~ n(O)T(O)~ Ox~ n(O,T(O) 

+r u)~ f (v,- 4~162 d~} 

ou(O) {f(i.Jj -- #~)O))fL%/J(l)d3v -{- R)O)ffLll~(1)d3i)] =0  (4.20) 
+ -~7~ 

If the integrals (A1), (A2), (A3), (A4), and (A5) given in the Appendix 
are substituted into Eq. (4.20), one obtains 

0 [ _ ~ / _ 0 u }  ~ Ou~ ~ 20uk(O)8~ ) 

% m t % + 0x---7 3 0x---7 

E  <O,m ] + ~ .(o, c, + ~ . < o r  = 0 (4.21) 

where ~ is the dynamic viscosity defined by Eq. (A5). Equation (A5) can be 
put in a more convenient form by utilizing the orthogonality conditions 
(4.5) for r/j and setting i = k and j -- l to yield the Hilbert formula for the 
dynamic viscosity 

1 J ~ d3v (4.22) 
" 9 -  10n(O)T(O) 
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where the linear integral operator 1 is given by Eq. (2.12) and 'r o is to be 
solved from the linear integral equation (4.3). The Hilbert formula for the 
dynamic viscosity given by Eq. (4.22) is precisely the same as that obtained 
by Chapman and Enskog. 

(iii) ;p~ = c--~-�89176 2. In this case, the solvability conditions 
(4.15) after some manipulations reduce to 

[ f + : '  f :v l 
O uj(. ~ ) 

+ m - - ~ - x / [ f ( ~ -  u)~ - u:O))fL* (', d3v 

"]"Ig:o)f(1)j - U)0))fLIp(1)d3/)] =0 (4.23) 

By substituting from Eq. (4.6) into Eq. (4.23) and utilizing the integrals 
given in the Appendix, it is not hard to show 

Ox i 2 m Ci + u/(~ 3 ..(O)T(o)c ~- n 1 , +  

OUk(~ ( 2 ~u} ~ 5n(O)T(o)~c~ ) + g -gg-x, + n<~176 + 

( au:~ Ou} ~ ) n<O r<o cjui(o ~ ~ Ou'(~ 0u)~ + - -  + = 0 (4.24) 
- ~  Oxj Oxi Ox: 0.9 Oxl 

where the dynamic viscosity ~/is given by Eq. (4.22) and )t is the thermal 
conductivity defined by Eq. (A8). The thermal conductivity X can be 
explicitly related to the law of intermolecutar force and other effects by 
utilizing the orthogonality conditions (4.4) for ~i and setting i = j  in Eq. 
(A8). One then obtains 

X - 1 ( fL~( i~ , )  d3v (4.25) 
3n(0)T(0)~ J 

where I is the linear integral operator defined by Eq. (2.12) and ~i is to be 
solved from the linear integral equation (4.2). The Hilbert formula for 
thermal conductivity given by Eq. (4.25) is again precisely the same as that 
obtained by Chapman and Enskog. 

To write down the steady field equations in the second approximation 
by the Hilbert method, one only needs to substitute for the coefficients C1, 
C,, and C i from Eqs. (4.12), (4.13), and (4.14) into Eqs. (4.18), (4.21), and 
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(4.24). The steady field equations which one arrives at are 

a (p~o% + u]0~p) = 0 
axj 

o [(~e)~ + u~,~176 + o(~176 + p ( ~ ~ Oxj L 

)]_ ~ 
- ~  ~ + Ox~ 3 Ox k 

) (   u,o' t 2 [ ~u~ ~ ~ a.(o~ a.)o~ + 
-~  + ~n I ~ ~ axj ~x, OX i ~Xj ~Xj 

-~xi +6ui--~x~ ) + n(~ T(~ ~6~ 

(4.26) 

where 

and 

(4.27) 

(4.28) 

6p =mSn (4.29) 

6P ---- n(~ + T(~ (4.30) 

are the contributions to the mass density and to the pressure from the 
second approximation, respectively. The steady field equations (4.26), 
(4.27), and (4.28) that follow from the second approximation are linear in 
8n, ST, and 8u and can be easily solved provided that one knows the 
solution from the first approximation. Thus, the solution of a steady gas 
flow problem by Hilbert's method requires first the solution of Euler's 
equations. The effects of viscosity and thermal conductivity can then be 
taken into account by solving the above linear steady field equations. 
Therefore, the effect of boundary layer or shock layer in the flow should be 
considered in the second approximation. 

. 

has 

HIGHER APPROXIMATIONS (THE BURNETT EQUATIONS, ETC.) 

Considering the next approximation [Eq. (2.15)] for steady flow, one 

Vi~xi(fL,(1))= --n(O)fL[I*(2) + Js(~(I),~(l))] (5.1) 

Substitution from Eqs. (3.4) and (4.6) for fL and qr into Eq. (5.1) after 
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cumbersome manipulations yields 
_ n(O)i~(2) 

[ 1 ( 2~'i O~ ) ~T(~ OT(~ 
= ?Ok n(O)T(O)~ T (o) 0T (o) Ox~ Ox k 

0n (~ 1 02T (0) 
+ l ,ro.Di j ~'i 

n(O):T(O)2 ~x k n(O)T(O)~ ~xi~x k 

( ) OT(~ 1 1 0z,y r Dq 
n(~ (~ 0 T (~ T (~ OXk n (~ 

1 OT (~ On (O) - - +  
n(O)~T(O)~ ~i Ox i Ox k 

1 ~Dij 
n(O)T(O) ~'/j oX k 

3n (o) 
Ox k 8n 

5 I 0 T (~ 1 0e 
+ 2 T(O)2 Ox k + -  _ T ( ~  ~ Ox k 

+ m Ou(i ~ i+  1 O(6n) 
T (o) Ox k n (o) Ox k 

m O(Sui) l + " ~ ( l ) i -  Ui (0)) 

+ ( 1  or( ~ 1 ) 
n(~176 2 ~ i -~x  i + --n(O)T(O) %Dy - q~(1) 

2c 0T (~ 
T(O? Ox k 6T 

1 (~_~T(O))O(ST)  
- -  + ~ Ox k 

+ ]w 
+n(~ ~ ,S+.O0r ~~ aT(O~ 

n(O) T(O) 3x~ OXj 

O T (0) l_._L~ Js(~i, tp( l) ) + n(~176 J~(~i, "Ok,) ~ Dk, - n(O)T(O)~ 

+ 1 j~(.rij, ~7)Dij 0 T (~ 1 2 J s ( T i  ' '  Tkl)DijDkl 
n(~176 ~ + n(O) T(O) 

1 js(.Cij,~pO))Dij _ 1 j [,t,(') ~j) aT(~ 
n(O)T(O) n(O)T(O)~ ~ v  , Oxj 

_1 - j  r,~(') ~-,,~)D~, +L(~( 'h~( ' ))]  
n(O)T(O) s~,-~ , ] 

(5.2) 
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The solution of the linear integral equation (5.2) for ~(2) will consist of 
terms up to second derivatives in u (~ and T (~ up to first derivatives in 
n ~~ 3u, 8n, and ST, combinations of them, plus a linear form +(2) of the 
summational invariants 

~(2) = C~--~ C~.  --~ Ci'(l.) i - u/(0)) (5.3) 

where C~, C[, and Ci' depend only on the coordinates x, y, and z and are 
related to the hydrodynamic variables 8n', 3u', and ST" through relations 
(2.7), (2.8), and (2.9), which reduce to 

= f f,#2) d3v (5.4) 

n(~ = f ( v i -  u,(~ d3v - 6nSui (5.5) 

3(n(~ + T(~ ') = f (fL.(:) d3v -  8,,8T- k.(~ (5.6) 

in this approximation. The solvability conditions for steady flow 

f~a/3 i ~ fL* (2) d3/) ~-- 0 (5.7) 

together with Eqs. (5.4), (5.5), and (5.6), will then yield the steady hydrody- 
namic equations (the Burnett equations) in this approximation. 

Higher approximations can be carried out similarly. 

6. S U M M A R Y  AND C O N C L U S I O N S  

The Hilbert expansion to the Boltzmann equation is carried out for 
steady flow. As was shown by Hilbert, the first term in the series for the 
distribution function is a local Maxwellian; thus, the derived hydrodynamic 
equations in the first approximation are Euler's equations. The second 
approximation for the distribution function in the Hilbert series is given by 
Eq. (4.6), and the steady field equations that follow from the second 
approximation are derived. The coefficients of thermal conductivity and 
viscosity of Hilbert that appear in the latter equations are explicitly given 
by Eqs. (4.25) and (4.22), respectively, and are seen to be precisely the same 
as those obtained by Chapman and Enskog. The procedure to obtain 
higher approximations is also summarized. 

It is clearly seen that the microscopic solution leads to the macroscopic 
hydrodynamic equations of the required order (Euler, Navier-Stokes, Bur- 
nett, and etc.) with appropriate boundary conditions. The initial value 
problem has been excluded from the discussion by restricting the expansion 
to steady flow. 
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The Hilbert solution of a steady gas flow problem can thus be 
obtained by first solving the steady Euler equations of ideal gas flow and 
then, the linear steady field equations derived in Section 4 with appropriate 
boundary conditions. The effects of viscosity and thermal conductivity in 
steady gas flow should be taken into account in the solution of the steady 
field equations of the second approximation. 

After the paper had been sent for publication, the author learned that 
Dr. R. G. Muncaster (13) also treated the Hilbert expansion in detail. 

A C K N O W L E D G M E N T  

The author is indebted to Professor J. A. McLennan for suggesting the 
problem. 

APPENDIX: TABLE OF INTEGRALS 

f fL6 (l) d3v= n(~ + 3n(~176 

f (v, - u,.(~ = n (~ r(~ Ci 

(A1) 

(A2) 

;(v, - .:o,)(,- : , > , , ,  :v=  (.,o, + ) m m C~SiJ 

(A3) 

f fv, - u}~ - u:~ 0 (A4) 

f(v,- ,,:~ ~<~ d3v = ~ ~  m -ff 606kl 

3 n(O)T(o)c 1 + ~ n(O)T(o)~c~ (A6) f r d3v= 

f e(v i - u~iO))jk~ f') d'v= 5 n(O) TC~ (A7) 

f e(v i - u}O))fL• j d3v = ~n(O)T(O)26 O (a8) 5 

f e (v, - u(,~ d3v = 0 (A9) 

%1 is the dynamic viscosity. 
53~ is the thermal conductivity. 
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